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We present a model for the dynamics of current-driven and field-driven domain-wall lines at nonzero
temperature. We compute thermally averaged drift velocities from the Fokker-Planck equation that describes
the nonzero-temperature dynamics of the domain wall. As special limits of this general description, we describe
rigid domain walls as well as vortex domain walls. In these limits, we also determine depinning times of the
domain wall from an extrinsic pinning potential. We compare our theory with previous theoretical and experi-
mental works.
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I. INTRODUCTION

Current-driven domain-wall motion was first predicted
and observed by Berger1,2 in the 1980s. It was not until the
discovery, in the 1990s, of the spin-transfer torque
mechanism3,4 that research on current-driven domain walls
took off. Spin-transfer torques on a domain wall can be un-
derstood on an intuitive level: the electrons which constitute
the current have spin and this spin rotates when it passes
through the domain wall as it aligns with the domain-wall
magnetization. By conservation of spin, there is an opposite
torque on the magnetization of the domain wall, which leads
to a net displacement of the domain wall in the same direc-
tion as the electric current. Later, to explain some discrepan-
cies with experiments, a so-called dissipative spin-transfer
torque �sometimes referred to as the nonadiabatic spin-
transfer torque� was added to the model.5,6 The value of the
dimensionless parameter �, which gives the strength of this
torque, has been the subject of much debate. By now it is
generally accepted that � is of the same order as �, the
Gilbert damping parameter, but not necessarily equal to
it.7–11 Furthermore, neither � nor � needs to be constant.
They depend on the properties of the material and are most
likely also temperature dependent.

Several properties of current-driven domain walls have
been studied. One particular subject of interest is the velocity
of the domain wall. The effect of an external pinning poten-
tial and the depinning behavior, both without and with ther-
mal fluctuations, were investigated experimentally.12–14

There is also interest in more complex, higher-dimensional
domain-wall models, such as vortex walls.15–17 These are
especially attractive from an experimental point of view
since their dynamics, such as precession in a potential and
transformations between vortex walls and transverse walls,
can be directly observed.7,18–20

With a few exceptions,21–25 most theoretical papers are
restricted to the zero-temperature case. This is unfortunate
since experiments on current-driven domain walls are usu-
ally done at room temperature and the relatively large current
will heat up the sample even further. Furthermore, especially
in the presence of a pinning potential, thermal fluctuations
are anything but negligible. Domain pinning can be neces-
sary, for instance, to precisely locate a domain wall but ther-
mal depinning can also be useful to lower the critical current.

This means that it is very important to understand the influ-
ence of thermal fluctuations on the behavior of the domain
wall precisely and thoroughly. Here, we present a unified
picture of previous work on domain-wall motion at nonzero
temperature that involved two of us as well as additional
results following from this unified picture.

We start this paper with the Landau-Lifschitz-Gilbert
equation, including both the reactive and the dissipative spin-
transfer torques. In Sec. II, we apply a variational principle
to derive the general equations of motion for a domain-wall
line including thermal fluctuations. In Sec. III we investigate
the velocity of current-driven and field-driven rigid domain
walls at nonzero temperature while in Sec. IV we look at
vortex domain walls in more detail. Both the rigid and the
vortex domain wall are special cases of the general descrip-
tion given in Sec. II. In both sections, we start with the
zero-temperature case and then investigate the influence of
thermal fluctuations. Pinning potentials are included in both
models and we examine thermal depinning. Each section is
divided into three subsections: one in which the model is
described, one in which we present our results, and a final
one to make a comparison with other work.

II. DOMAIN-WALL LINES

In this section, we derive the equations of motion for a
domain-wall line in a more detailed way than in previous
work21 and present results obtained from this model. We de-
rive the Fokker-Planck equation of the system and determine
the stochastic behavior under the influence of temperature.
The model is then considered in the absence of extrinsic
pinning so that there is only intrinsic pinning due to mag-
netic anisotropy. We determine the drift velocity of the do-
main wall as a function of the current through the system.
Finally, we compare our model with other theoretical and
experimental works available in the literature.

A. Model

Magnetization dynamics including spin-transfer torques
are described by the Landau-Lifschitz-Gilbert equation3,4

� �

�t
+ v�s · �� �� = � � H − �� � � �

�t
+

�

�
v�s · �� �� ,

�1�

where � is a unit vector in the direction of the magnetiza-
tion. In this expression, the first term on the right-hand side
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�rhs� contains a contribution due to the effective field, which
is written as the functional derivative of the micromagnetic
energy functional of the system and an external magnetic
field H�x� , t�=−�EMM���x� , t�� /����x� , t�+gBext�x� , t� /�. For
clarity, we denote positions in three-dimensional space with
an arrow and the directions of the magnetization by bold
symbols. The second term describes Gilbert damping, which
is characterized by the dimensionless parameter �. The term
proportional to v�s on the left-hand side �lhs� is the reactive
spin-transfer torque. The term proportional to �v�s on the rhs
corresponds to the dissipative spin-transfer torque and is
characterized by the dimensionless parameter �. The veloc-
ity v�s is given by v�s=−a3PJ�c / �e�, where a is the lattice con-
stant, J�c is the charge current, and P is its spin polarization.
To facilitate a variational approach, we note that the Landau-
Lifschitz-Gilbert equation is obtained from

�S

���x�,t�
=

�R

��̇�x�,t�
, �2�

where R is a dissipation functional and S=S0+Sdrive denotes

the action of the system. The dot is a time derivative �̇
��� /�t. The action for the magnetization dynamics in the
absence of current and field is given by

S0���x�,t�� =	 dt	 d3x

a3 
�A���x�,t�� ·
���x�,t�

�t

+ J��x�,t� · �� 2��x�,t� − K��y
2�x�,t�

+ Kz�z
2�x�,t��

�	 dt
	 d3x

a3 �A���x�,t�� ·
���x�,t�

�t

− EMM���x�,t��� . �3�

In this expression, J is the spin stiffness, K��0 and Kz�0
are the hard-axis and easy-axis anisotropy, respectively. The
function A��� is the vector potential of a magnetic mono-
pole which obeys ���A���=� and is required to repro-
duce the precessional motion of ��x� , t� around the effective
field.

The external field Bext�x� , t� and the reactive spin-transfer
torque are determined from the action Sdrive���x� , t��. We take
the external magnetic field to be spatially homogeneous and
time independent Bext�x� , t�=Bext. The action is given by

Sdrive���x�,t�� =	 dt	 d3x

a3 �gBext · ��x�,t�

+ A��� · �v�s · �� ���x�,t�
 , �4�

with g as a positive constant. The dissipation functional that
describes the dissipative spin-transfer torque and the Gilbert
damping is written as

R���x�,t�� =
��

2
	 dt	 d3x

a3 �� �

�t
+

�

�
v�s · �� ���x�,t��2

.

�5�

As the last ingredient, we take into account thermal fluc-
tuations. We add to the effective field in Eq. �1� stochastic
contributions h such that H→H+h, where h has white-noise
correlations

�hi�x�,t�hj�x��,t��� = 	ij��x� − x�����t − t�� , �6�

�hi�x�,t�� = 0, �7�

and where the indices i , j� �x ,y ,z
 label Cartesian coordi-
nates. The strength 	ij is given by the fluctuation-dissipation
theorem 	ij =�ij2�kBTa3 /�, which assures that in the ab-
sence of field and current, the Boltzmann equilibrium distri-
bution

Peq��� 
 e−EMM���/kBT �8�

is reached after sufficiently long times. In principle, Eqs.
�2�–�6� describe the full magnetization dynamics. Obtaining
results on finite-temperature average drift velocities of do-
main walls is however very cumbersome, especially in the
presence of extrinsic pinning. We therefore use a variational
method.

We obtain the specific form of our variational ansatz by
varying the action in Eq. �3� for a time-independent magne-
tization. Using �= �sin � cos � , sin � sin � , cos �� we find
��= �Kz /J�sin2 �,26 where the primes denote derivatives with
respect to x. This equation has domain-wall solutions
tan�� /2�=exp�
�x−X� /�
 and �� �0,�
, where �=�J /Kz
is the domain-wall width and X is the position of the domain
wall.

The variational ansatz we use is tan��dw /2�=exp��x
−X�z , t�� /�
 and �=�0�z , t�. A domain wall is now described
by two collective coordinates X�z , t� and �0�z , t� that repre-
sent the position of the domain-wall line and the chirality at
this position, respectively. Note that z is the coordinate along
the line and also that there are other possibilities for the exact
form of the ansatz, such as choosing a different domain-wall
charge.

We choose the magnetic field pointing in the positive z
direction Bext=Bzẑ, Bz�0. Furthermore, the current is taken
in the positive x direction. We find that the action in terms of
the collective coordinates X�z , t� and �0�z , t� is then given by

S�X,�0� = − N�	 dt	 dz

Lz
�X

�
�̇0 +

K�

�
sin2 �0 +

J

�

�X��2

�2

+
J

�
��0��

2 −
gBz

�

X

�
+

vs

�
�0� , �9�

where N=2�LyLz /a3 is the number of magnetic moments in
a domain wall with Ly ,Lz the length of the sample in the y
and z directions, respectively. We now substitute the ansatz
in Eq. �5� to obtain the dissipation functional as a function of
the collective coordinates
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R�X,�0� = N
��

2
	 dt	 dz

Lz
�� Ẋ

�
−

�vs

��
�2

+ �̇0
2� . �10�

Upon variation in the total action in Eq. �9� with respect to X
and �0, and setting this equal to the variation in the dissipa-

tion function in Eq. �10� with respect to Ẋ and �̇0, respec-
tively, we obtain equations of motion for the collective coor-
dinates

�̇0 + �
Ẋ

�
=

2J

�

X�

�
+ �

vs

�
+

gBz

�
, �11�

Ẋ

�
− ��̇0 = −

2J

�
�0� +

K�

�
sin�2�0� +

vs

�
. �12�

We now add thermal fluctuations that contribute as sto-
chastic terms to Eqs. �11� and �12� so that we obtain Lange-
vin equations

�̇0�z,t� + �
Ẋ�z,t�

�
= −

Lz�

�N

�Veff�X,�0�
�X�z�

+ �X�z,t� , �13�

Ẋ�z,t�
�

− ��̇0�z,t� =
Lz

�N

�Veff�X,�0�
��0�z�

+ ��0
�z,t� . �14�

Here we take functional derivatives of an effective potential
that is a functional of X�z� and �0�z�. Allowing for an arbi-
trary potential Vdis�X ,�0� due to disorder and inhomogene-
ities, this effective potential is given by

Veff�X,�0� = − �N	
0

Lz dz

Lz
�−

J

�
�X�2

�2 + �0�
2� +

K�

2�
cos�2�0�

+
vs

�
��

X

�
− �0� +

gBz

�

X

�
� + Vdis�X,�0� �15�

and also includes contributions from the micromagnetic en-
ergy functional, the external field, and spin-transfer torques.
Note that in the absence of current, field, and disorder, the
potential in Eq. �15� is exactly the total micromagnetic en-
ergy EMM��dw�=Veff�X ,�0�.

The noise in Eqs. �13� and �14� obeys ��i�z , t�� j�z� , t���
=	�ij��t− t����z−z�� and ��i�z , t��=0, where �i , j
� �X ,�0
.
The strength 	 can be determined from the Fokker-Planck
equation, which for the Langevin Eqs. �13� and �14� is given
by27

�1 + �2�
�P�X,�0�

�t
=

1

�
	

0

Lz dz

Lz

 �

��0
���

N

�Veff

��0
+

�

N

�Veff

�X
�P�X,�0�� + �

�

�X
����

N

�Veff

�X
−

1

N

�Veff

��0
�P�X,�0��

+
	

2
��2 �2

�X2 +
�2

��0
2�P�X,�0�� . �16�

By demanding that the equilibrium Boltzmann distribution
function that follows from Eq. �8�, given by

Peq 
 e−Veff/kBT, �17�

is a time-independent solution of the above Fokker-Planck
equation, we find the strength of the thermal fluctuations as

	 = 2�kBTLz/�N . �18�

We see that the noise obeys the fluctuation-dissipation theo-
rem with an effective temperature TLz /N. The temperature is
therefore effectively reduced by the magnetic-moment den-
sity in the domain-wall line.

B. Results

Two of us analyzed the model in Eqs. �13� and �14� in the
presence of extrinsic pinning.21 In this section, we focus in-
stead on the clean situation, in which Vdis=0 everywhere. In
the T=0 case, the domain-wall line will stay straight because
the force on each point is exactly the same. Specializing to
�=0, we find that there is a critical current vs,crit=�K� /�.
Below this critical current, the domain wall will not be able

to acquire a finite drift velocity. This phenomenon is usually
called intrinsic pinning26 and it does not occur for ��0.
Above the critical current, the domain wall will acquire an
average drift velocity, given by

�Ẋ� = −
1

�1 + �2�
�vs

2 − vs,crit
2 . �19�

In the presence of thermal fluctuations we can no longer
assume that the domain wall remains straight and we need to
go through a rather more elaborate procedure to find the
average drift velocity. More specifically, if there are thermal
fluctuations, we can differentiate between the flow regime
above vs,crit, for which Eq. �19� still approximately applies
and the thermal regime below vs,crit, in which the speed is
finite but goes with a different power law.

To find the behavior in the thermally assisted regime, we
start by rewriting the Langevin equations to find just one
equation for �0�z , t�. We then specialize to the case without
an external magnetic field with �=0 and take 1+�2�1. We
assume that X��0 because there is no potential that couples
to X and find
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�̇0 = 2�
J

�
�0� −

�K�

�
sin�2�0� −

�vs

�
+ �X − ���0

, �20�

which describes the motion of a string in a tilted washboard
potential, a problem that was investigated before in a differ-
ent context by Büttiker and Landauer.28 For vs�vs,crit, the
string propagates by thermal activation. This occurs due to
the formation of a nucleus or of a kink-antikink pair in the
string. That is, part of the string is moved over the potential
barrier due to thermal activation. If this nucleus is large
enough, the kink and antikink will proceed to move apart
from one another and the string propagates to the next po-
tential valley. Two factors are important: the energy barrier
�E that needs to be overcome to generate a sufficiently large
nucleus and the propagation velocity of the kinks �and anti-
kinks�.

Let us start with the former. It is given by �E /E0
=�J /K���d�0,N /dz�2dz, where �0,N is a time-independent
solution of the differential equation �J /K���d2�0,N /dz2�
=sin��0,N�−vs /vs,crit and represents a stationary configura-
tion, corresponding to the motion from a local maximum and
back. In the above, �E is given in units of E0
=��JK� / �2��. The result is shown in Fig. 1. In the limit that
we are close to the critical current, i.e., that �vs,crit
−vs� /vs,crit�1, we can solve for �E exactly and find28

�E =
24

5
�

�JK�

�
�1 −

vs

vs,crit
�5/4

. �21�

This formula indeed fits very well to the tail of our numerical
curve. Note that the energy barrier remains finite as vs→0.
The difference between the above formula and the numerical
solution is at most 25%, suggesting we may use Eq. �21� to
estimate the qualitative behavior of domain-wall motion
even at lower values of vs /vs,crit. In the limit that vs→0 we
have that �E
vs log vs. This limit is not shown in Fig. 1 as
it applies only for vs very close to zero.

The other important quantity is the velocity at which the
kink and antikink move away from one another. This veloc-
ity is found numerically by solving the equation

�0� +
u

u0
�0� − sin �0 +

vs

vs,crit
= 0, �22�

with u0=2�E0 /� and finding the u for which the solution
�0�z� which starts out at ��0�=arcsin�vs /vs,crit� will go away
from that point and return to arcsin�vs /vs,crit� at z→�. The
universal curve for this velocity is shown in Fig. 2.

The probability of creating sufficiently large nuclei fol-
lows an Arrhenius law j
exp�−�E / �kBT��. We now have all
the necessary ingredients to find the average velocity of the
string, which is proportional to �uj. In the limiting case
where the current is close to the critical one, we have that28

�Ẋ� = 53/4�6��1/42�K�

�
�ue−�E/2kBT

�� �E

kBT
�1/4�1 − � vs

vs,crit
�2�3/8

, �23�

where u is a function of vs /vs,crit as in Fig. 2. In Fig. 3, we
have plotted this velocity for different temperatures.

C. Experimental status

In many experiments, the nanostrip is sufficiently narrow
that we can neglect deformations of the domain-wall line and
approximate it as being rigid, an approximation we treat in
the next section. However, Yamanouchi et al.29 have ob-
served in their experiments with magnetic semiconductors

0 0.2 0.4 0.6 0.8 1
f
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�
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E
0

Analytical

Numerical

FIG. 1. �Color online� The energy barrier �E /E0 necessary to
generate a nucleus large enough for the kink and antikink to propa-
gate as a function of vs /vs,crit. The solid line was found by numeri-
cal calculation. The dashed line corresponds to Eq. �21�.
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FIG. 2. �Color online� Velocity of the kink �equal to minus the
velocity of the antikink� as a function of current.
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FIG. 3. �Color online� Velocity of the domain-wall line as a
function of current for different values of T.
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that the domain wall looks wedge shaped in the current-
induced case, suggesting that deformations play a role in
wide enough nanostrips.

Yamanouchi et al. also found that the velocity of the do-
main wall obeys a scaling law. More specifically, they fitted

their data with a creeplike scaling law log Ẋ
vs
−� with an

exponent ��0.33. Recent experiments with ferromagnetic
metals30 have found the exponent ��1 /4 which would
imply21 that the dissipative spin-transfer torque dominates in
the creep regime in this case.

III. RIGID DOMAIN WALLS

In this section, we simplify the model of domain-wall
lines by assuming that the domain-wall coordinates are con-
stant along the z direction, the domain wall is then rigid. This
simplification allows us to obtain various results analytically.

A. Model

As mentioned before, rigid domain walls obey X�=�0�
=0, i.e., they are rigid in the z direction. We expect this
approximation to hold in the limit when Lz is comparable to
�. We integrate Eqs. �13� and �14� over z �which is quite
trivial since there are no z dependences anymore� to obtain
the Langevin equations for a rigid domain wall �we use
�dz�V�X�z�� /�X�z�→�V�X� /�X and equivalently for �0�

�̇0 + �
Ẋ

�
=

− �

�N

�Vrigid

�X
+ �̃X, �24�

Ẋ

�
− ��̇0 =

1

�N

�Vrigid

��0
+ �̃�0

. �25�

We integrate the total potential in Eq. �15� to find �note that
X�=�0�=0�

Vrigid = − �N�K�

2�
cos�2�0� +

gBz

�

X

�
+

vs

�
��

X

�
− �0��

+ Vdis�X,�0� . �26�

The stochastic correlations are found from

��̃i�t��̃ j�t��� =
1

Lz
2�	

0

Lz

dz	
0

Lz

dz��i�z,t�� j�z�,t���
=

2�kBT

�N
�ij��t − t�� . �27�

In our model, rigid domain walls obey the fluctuation-
dissipation theorem with effective temperature T /N; i.e., the
temperature is effectively reduced by the number of mag-
netic moments in the domain wall.

B. Results

1. Clean system, intrinsic pinning

We first focus on the case that the extrinsic pinning is

zero. Substitution of Ẋ from Eq. �24� into Eq. �25� then pro-
vides us with an equation that is independent of X. Using the
equilibrium solution of Eq. �16�, we find the average velocity
of the chirality ��̇0�. With this result and Eq. �24�, we com-
pute average drift velocities

�
�Ẋ�
�

= − ��̇0� + �
vs

�
+

gBz

�
, �28�

where the average chirality velocity is given by27 �we omit a
factor 1+�2�1�

��̇0� =
− 2��eHeff − 1��kBT/�N

	
0

2�

d�e−�����	
0

2�

d��e����� + �eHeff − 1�	
0

�

d��e������ . �29�

In this expression, the dimensionless effective potential is
given by

���0� =
N�

kBT
�	Heff

4�Lz

�0

�
−

K�

2�
cos�2�0�� , �30�

and the dimensionless effective field is defined as Heff
=4�Lz���−��vs /�−gBz /�� /	. The expressions in Eqs. �28�
and �29� generalize the results by Duine et al.,22 to include
external magnetic fields and ��0.

In the field-driven case, we set vs=0 to find the behavior
in Fig. 4. In the calculations, we use a fixed value for the
damping parameter �=0.02 and several values for the tem-

perature. At zero temperature, the drift velocity depends on
the external magnetic field linearly as �Ẋ�=��gBz /�� /� up to
a critical value Hcr=�K� /�. At this point, the domain wall
starts precessing causing the Walker breakdown. This behav-
ior was originally predicted by Schryer and Walker31 and
was subsequently observed, e.g., by Beach et al.32 From Fig.
4 we see that for nonzero temperatures, the Walker break-
down smoothens out. For T→�, it fully disappears and we
find that the domain-wall velocity is linear with the field for
all fields. We note that temperature only has an effect on the
drift velocity for small fields. For very large external fields,
the drift velocity is for all temperatures linear with the field

and obeys �Ẋ�=���gBz /��.
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For the purely current-driven case, where we set Bz=0,
the relative values of � and � determine the sign of the
contribution due to the current to the effective force. Again,
we set �=0.02 and choose several values for � and for the
temperature. It is indeed seen in Fig. 5 that the behavior of
the average drift velocity for ��� is very different from �
��. In the limiting case �=0, we see that there is a critical
current vs,crit=K�� /� in agreement with Eq. �19�. In the
large � limit, we recognize a Walker-breakdown-like behav-
ior, just like the behavior found in purely field-driven
domain-wall motion. For very large currents, the drift veloc-

ity acquires a linear dependence on the spin current �Ẋ�=vs
for all values of � and for all temperatures.

2. Extrinsic pinning

Domain-wall pinning is of practical interest. Control of
domain walls is achieved by pinning the domain wall in a
position by means of, for example, a deformation in the ma-
terial. In nanowires or thin metal strips, dents in the sample
act as an intended pinning potential. A thorough understand-
ing of depinning times is especially important in systems that
are relevant for technological applications, such as data stor-
age devices.

To incorporate pinning in our theory, we add a pinning
potential Vpin to the potential Vrigid in Eqs. �24� and �25�. A
pinning potential that is due to a deformation in the material
can be obtained through energy analysis. We discern between

two types of deformations: symmetric and asymmetric
notches. The sample we have in mind is a thin strip of fer-
romagnetic or semiconductor material, where the notches are
little dents on the sides of the strip. In the case of symmetric
notches, there is a dent on both sides of the sample. If there
is only a dent on one side, we have an asymmetric notch. It
turns out that symmetric pinning sites can effectively be de-
scribed by a quadratic-well potential in the X direction,18 that
is, independent of the chirality. For asymmetric notches, the
pinning potential also has a chirality dependence.12

As an example, we consider the symmetric notch. If we
add a X-dependent symmetric-notch contribution to Eqs. �24�
and �25�, we see that the pinning contribution in Eq. �25�
vanishes. Because of the explicit X dependence in Eq. �24�,
the system can no longer be described by a probability dis-
tribution that depends on the variable �0 only. Therefore, all
terms in the Fokker-Planck Eq. �16� need to be taken into
account and we are not able to find an analytic solution to the
full problem. We can, however, compute depinning times
using Kramer’s escape-rate theory.

The potential that Tatara et al.26 proposed for a symmetric
notch has a kink at the sides, which makes it less suitable for
escape-rate computations. We therefore use a very similar
but smooth potential

Vpin
S =

NV0

2
�2�X

�
�2

− �X

�
�4� , �31�

where V0 /2 is the depth and 2� is the width of the potential
well.

We compute depinning times for the pinning potential in
Eq. �31� using Kramer’s escape-rate theory which states that
the depinning time is proportional to log���0�=�V /�kBT,
where �0
V0 /� is an attempt frequency and �V is the
height of the potential barrier that has to be overcome. We
determine the positions of the potential minimum and the
saddle through variation in the potential Vrigid+Vpin. Substi-
tution of these coordinates provides us with the potential
difference �V. The depinning time for driving current and
field is found as log �
�V
−�gBz /�+�vs /��. Note that if
�=0, the depinning time is independent of the applied cur-
rent within this approximation.

3. Disorder potential

The final potential that we consider is a disorder potential.
Due to, for example, roughness on the edges of a sample,
there is a random pinning potential Vdis�X� that is felt by the
domain wall. We consider a situation of strong pinning of the
angle �0 such that ��̇0�=0 �see Ref. 23 for an extensive
analysis including the dynamics of this angle�. This would be
the case for fields below Walker breakdown and currents
below vs,crit. The equation of motion for the coordinate X is
then found from Eq. �24� to be

�
Ẋ

�
= �

vs

�
+

gBz

�
−

�

�N

�Vdis�X�
�X

+ �̃X. �32�

The disorder potential Vdis�X� that enters the equations of
motion is characterized by certain spatial correlations
�Vdis�X�−Vdis�X���2=���X−X�� /���. In this expression, the
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FIG. 4. �Color online� Field-driven domain-wall motion for sev-
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line denotes an average over the disorder and ��0 is a
measure for the strength of the disorder potential. The expo-
nent � characterizes the nature of the correlations. In general,
there are two ways of obtaining a disorder potential: by ap-
plying a random field or by randomizing locally the strength
of certain coupling constants in the system, for example, the
anisotropy or the spin stiffness. The former is called random-
field disorder and gives rise to correlations with �=1,
whereas the latter is called random-bond disorder with expo-
nent �=0. For both limits, Le Doussal and Vinokur33 have
obtained expressions for depinning times for a zero-
dimensional object �in our one-dimensional model, the do-
main wall itself is described as a point at position �X ,�0

with dimension zero�.

For random-field disorder ��=1�, Le Doussal and Vinokur
find that the drift velocity is zero up to some critical driving
current and/or field Fc
� /T and is then linear with the driv-
ing force

�Ẋ�
�

=
�vs

�
+

gBz

�
− Fc. �33�

For random-bond disorder ��=0� they find that the drift ve-
locity obeys

�Ẋ� 

��vs/� + gBz/��z−1

��z − 1�Tz+2 , �34�

where z=2+� /2�kBT�2 is the so-called dynamical exponent
and ��z� is the gamma function. Surprisingly, they find that
for 0���1 the results turn out to resemble the results ob-
tained for higher-dimensional objects, i.e., Le Doussal and
Vinokur find a creep scaling law with a certain creep expo-
nent

�Ẋ� 
 ��vs/� + gBz/�
Fc

�z−1−�/2/1−�

�exp�− �1 − ����vs/� + gBz/�
�Fc

�−�/1−�� , �35�

where Fc
T�� /2�kBT�2�1/� is a characteristic critical driving
force. Note that the creep exponent �z−1−� /2� / �1−�� is
always larger than 1 for 0���1.

C. Comparison with other work

To compute drift velocities at finite temperature, we have
expanded the theory proposed by Duine et al.8 to include
external magnetic fields in addition to driving currents. Other
theoretical work is done by Tatara et al.24 and by Martinez et
al.25 Here, we compare our results with the results by Mar-
tinez et al.

In order to write Eqs. �24� and �25� in terms of the coor-
dinate X only, Martinez et al. assume �0 to be small such
that sin 2�0�2�0. Note that this assumption only holds
when Bz�gK� and/or vs�vs,crit for ��0. If, however, we
do make this assumption and differentiate Eqs. �24� and �25�
with respect to time, we find

Ẍ

�
= ��̈0 + 2�̇0

K�

�
, �36�

�̈0 = − �
Ẍ

�
, �37�

where we omitted the stochastic terms. We now substitute
Eqs. �24� and �37� in Eq. �36� and like Martinez et al. add a
stochastic term to find

�1 + �2�
�

2K�

Ẍ

�
= − �

Ẋ

�
+ �

vs

�
+

gBz

�
+ �th. �38�

The correlations of the stochastic force are, according to
Martinez et al., given by

��th�t��th�t��� = 	��t − t��, ��th�t�� = 0. �39�

From the fluctuation-dissipation theorem, they infer that 	

N�kBT. An easy way to obtain the Fokker-Planck equation

is to introduce a new variable v= Ẋ,27 such that we have two
Langevin equations

Ẋ = v , �40�

�1 + �2�
�

2K�

v̇
�

= − �
v
�

+ �
vs

�
+

gBz

�
+ �th. �41�

Note that the above equations have to be solved with the

initial conditions Ẋ�t=0�=v�t=0�=vs to include the reactive
spin-transfer torque. The Fokker-Planck equation generated
by these Langevin equations is given by �we omit a factor
1+�2�1�

�P�X,v�
�t

= −
�

�X
�vP�X,v�� −

2K�

�

�

�v

��− �
v
�

+ �
vs

�
+

gBz

�
+

	K�

�

�

�v
�P�X,v� .

�42�

This Fokker-Planck equation is satisfied by a Boltzmann
equilibrium distribution that has the same potential energy as
Eq. �26� for �0=0 but with an additional kinetic energy
�v2 /K�. The exact form of the stochastic strength is 	
=�kBT /NK�. We conclude that this procedure complies with
our model for a small range of applicability.

Several field-driven domain-wall motion experiments
have been performed in ferromagnetic metallic materials.18,32

Clear Walker-breakdown behavior is observed but the peak is
not smoothed like our theory predictions. Estimates by Duine
et al.22 show that room temperature, at which these experi-
ments were performed, leads to an effective temperature
kBT /NK��10−3 for ferromagnetic metals. Our prediction is
therefore indistinguishable from the zero-temperature curve
in Fig. 4. The reason for this low-effective temperature is the
fact that the number of particles in the domain wall is rela-
tively high in a ferromagnetic metal. In magnetic semicon-
ductors, however, not all magnetic moments participate in
the magnetization, reducing the number of magnetic mo-
ments in a domain wall by up to a factor �100, thereby
greatly increasing the effective temperature. From Fig. 4 we
see that an effective temperature kBT /NK��10−1 should be
distinguishable from the zero-temperature curve. We predict
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therefore that the influence of thermal effects on Walker
breakdown should be observable with field-driven domain
walls in clean magnetic semiconductors.

Escape time studies have been performed on narrow do-
main walls by Ravelosona et al.13 They indeed find that the
logarithm of the �average� escape time decreases linearly
with the applied current. Since the current dependence of the
logarithm of the escape time is determined by �, we can
estimate the value of � from their curve and we find that it is
on the order ��10−2, i.e., on the order of the damping pa-
rameter �, in agreement with theoretical expectations.

IV. VORTEX DOMAIN WALLS

In this section we consider the limit of the domain-wall
line that corresponds to vortex domain walls and derive sev-
eral analytical and numerical results.

A. Model

Vortex domain walls are described by making the ansatz
for the z dependence of the chirality

�0 = 2 arctan e
�z−Z�t��/�. �43�

The coordinate Z�t� plays a similar role as X�t� and the width
of the vortex domain wall �=�J /K� in the z direction is the
equivalent of the width � in the x direction. The coordinates
�X�t� ,Z�t�
 now determine the position of the vortex at time
t.

In principle, we should consider boundary conditions in
the z direction. We deal with this problem by assuming
� /Lz→0, in which limit the ansatz reduces to �0
�� /2
 ���z−Z�t��−1 /2
�, with ��x� the Heaviside step
function. The drawback is that we are now neglecting all
boundary effects. The 
 sign is the product of the chirality
and charge in the ansatz and determines whether we have a
clockwise or counterclockwise rotation in the vortex domain
wall and is usually denoted as the Skyrmion number
s� �−1,1
. We note that the vortex domain wall is now fully
characterized by its position �X�t� ,Z�t�
, its dimensions ��
���, the Skyrmion number s, and the number of magnetic
moments in the vortex 4��Ly /a3=2�N /Lz.

We apply the simplified ansatz to the action in Eq. �9� to
find an action for a vortex domain wall in terms of the col-
lective coordinates X�t� and Z�t�,

Svor�X,Z� = − �N	 dt�s�
Z

Lz

Ẋ

�
−

gBz

�

X

�
− s�

vs

�

Z

Lz
� .

�44�

The dissipation function in Eq. �10� is also written in terms
of the new coordinates, however, we need to take into ac-
count the full ansatz in Eq. �43� in order to find the � depen-
dence in the last term,

Rvor�X,Z� =
��N

2
	 dt�� Ẋ

�
−

�vs

��
�2

+
2Ż2

�Lz
� . �45�

Variation in the functionals in Eqs. �44� and �45� provides us
with the Langevin equations for a vortex domain wall

− s�
Ż

�
+

�Lz

�

Ẋ

�
=

�Lz

�

vs

�
+

Lz

�

gBz

�
+ �X

V, �46�

s�
Ẋ

�
+ 2�

Ż

�
= s�

vs

�
+ �Z

V, �47�

where we have again added stochastic forces to model ther-
mal effects. We see that the effective dampings are given by
�X=�Lz /� and �Z=2�. We write the right-hand side of Eqs.
�46� and �47� in terms of a total potential

Vvortex = − �N�vs

�
��

X

�
+ s�

Z

Lz
� +

gBz

�

X

�
� . �48�

Note that this potential is also obtained by inserting the an-
satz in Eq. �15�. With these identifications, we can again
write the Langevin Eqs. �46� and �47� in the more suggestive
form

s�
Ż

�
− �X

Ẋ

�
=

Lz

�N

�

�

�Vvortex

�X
+ �X

V, �49�

s�
Ẋ

�
+ �Z

Ż

�
= −

Lz

�N

�

�

�Vvortex

�Z
+ �Z

V. �50�

Note that the prefactor Lz /N� is proportional to the inverse
of the number of magnetic moments in the vortex domain
wall. Using the Fokker-Planck method outlined in Sec. II, we
find that the probability distribution function P does not sat-
isfy Boltzmann equilibrium P
exp�−Vvortex /�kBT� if we as-
sume that the fluctuations in the X and Z directions have the
same strength. However, we write down a more general
Fokker-Planck equation than the one in Eq. �16�, in terms of
stochastic correlations ��i

V�t�� j
V�t���=	ij��t− t��. Again, we

demand the Boltzmann equilibrium in Eq. �17� to be a solu-
tion to the modified Fokker-Planck equation, which yields
complicated equations that can be solved. Up to second order
in the small parameter �, we find that the stochastic correla-
tions must obey

��i
V�t�� j

V�t��� = 	i�ij��t − t�� , �51�

where the indices denote i� �X ,Z
 and

	X = 2�X
kBTLz

�N�
, 	Z = 2�Z

kBTLz

�N�
. �52�

In these relations, we recognize the fluctuation-dissipation
theorem with effective temperature Teff=TLz /N�. The reduc-
tion by the factor �N /Lz is caused by the fact that the number
of microscopic degrees of freedom is proportional to this
factor. Note that because the damping is anisotropic, it is also
necessary to introduce anisotropy in the fluctuations.

From the form of Eqs. �49� and �50�, it is clear that we
reach the isotropic case for �X=�Z, i.e., when we demand
that Lz=2�. Note that then also 	X=	Z and that the reduction
in the effective temperature is now proportional to N. That
this is indeed the isotropic case is also seen from the fact that
now the coordinates X /� and Z /� are treated on equal foot-
ing in the dissipation functional in Eq. �45�.

LUCASSEN et al. PHYSICAL REVIEW B 79, 224411 �2009�

224411-8



If we also demand that �=�, our model describes circular
vortices that furthermore occupy the entire width of the strip.
This case is similar to the zero-temperature results of Shibata
et al.15 on the current-induced vortex displacement in a mag-
netic nanodisk and their equations of motion correspond to
ours in the case that �=0 and Bz=0.

To include extrinsic pinning in our model, we again add a
pinning potential to the potential Vvortex. As an example, we
will consider a circularly symmetric pinning potential, qua-
dratic in both X and Z, and bounded at a certain radius �,

Vpin
V = N

V0

2
��X

�
�2

+ �Z

�
�2���X2 + Z2 − �2� . �53�

B. Results

1. Zero temperature without extrinsic pinning

When there are no external fields or pinning potentials,
we can read off the T=0 behavior directly from Eqs. �46�
and �47�. For instance, it is clear that under the influence of a
current to the right, the domain wall will move to the right
also and its speed in the x direction will be directly propor-
tional to the current, as can be seen in

Ẋ =

1 +
2Lz

�2�
��

1 +
2Lz

�2�
�2

vs. �54�

Note that if �=�, the velocity of the domain wall will be
exactly equal to the velocity of the current. For the transverse

velocity Ż, we get

Ż =
− sLz�� − ��vs

��� +
2Lz

��
�2� . �55�

The direction of motion in the z direction depends on the
Skyrmion number s, and also on the sign of �−�, and the
magnitude is proportional to vs. Theoretically, if �=�, the
vortex core would move in a straight line, i.e., the center of
the vortex would not get a transverse displacement. Note that
there is no intrinsic pinning in the case of a vortex domain

wall, not even if �=0. For �=�=0 we find that �Ẋ�= �

�vs,
showing that the shape of the vortex domain wall has an
influence on the motion as well.

2. Zero temperature with extrinsic pinning

We will now investigate what happens if there is a pin-
ning potential of the form in Eq. �53�. If the potential is not
bounded �i.e., if the step function is absent�, T=0 and Hext
=0, the solutions can be found analytically and they describe
a circular motion ending at a fixed point. As we can read
from the formulas, these fixed points will be at X
=�vs��2 / ��2V0� and Z=s�vs��2 / ��LzV0�. Note that only the
former depends on �. This agrees with our physical intuition
that � tilts the potential landscape in the X direction but that
it has no effect in the Z direction.

When the potential is bounded there is a critical current
for depinning the domain wall. We cannot find this current
precisely using analytic calculations but we can however
make a rough estimation if we take the current for which the
equilibrium position falls outside the boundary as an indica-
tion. This will naturally overestimate the critical current
since the domain wall precesses after the current is switched
on but it is a good approximation for the upper boundary. We
find

vs,crit �
�2V0Lz

��
� 1

Lz
2�2 + �2�2 . �56�

Numerical calculations can give us more precise results.
For instance, for a symmetric domain wall �i.e., �=�� with
Lz=100�, �=�, and �=0, we find vs,crit�21.78�V0 /� while
the analytical upper bound found with the formula above is
vs,crit�31.831�V0 /�. Numerical calculations also give us the
escape time at vs,crit, which is approximately 0.074� /V0 �for
�=0�. Equation �56� suggests that the critical current is pro-
portional to 1 /�. Figure 6 shows both Eq. �56� and the nu-
merical results for the aforementioned values of �, Lz, and �.

3. Escape rate at finite temperature

We now include thermal fluctuations. To give some in-
sight into the motion of the domain wall in this case, we have
plotted a possible solution to the Langevin Eqs. �49� and �50�
in Fig. 7. The current here is just under the critical one,
kBTLz=NV�, and we are looking at a symmetric vortex with
Lz=100�.

We next determine the escape time �i.e., the time it takes
for the domain wall to move outside the boundary of the
pinning potential� as a function of the current and its depen-
dence on temperature. As the average escape time is rather
hard to determine and as the escape times are distributed
approximately exponentially, we have, for practical pur-
poses, chosen the median escape time as an indicator.
Median / ln 2 is then expected to be a good measure for the
average escape time. The results, with the logarithm of the
median escape time plotted against the current, are shown in
Fig. 8.

Note that there is a clear distinction between the thermal
regime and the slide regime. The behavior in the thermal
regime can be fitted very well by an equation of the form
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FIG. 6. �Color online� Critical current as a function of the dis-
sipative spin-transfer torque parameter �.
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exp��a−bvs /vs,crit�NV� /kBTLz� with a and b, two numerical
factors. Fitting shows a to be on the order of 35 and b around
1.8. Hence we find that the logarithm of the escape time is
proportional to current.

C. Comparison with other work

Vortex domain walls are of great interest to experimental-
ists because they are large enough to be visible with, for
instance, scanning electron microscopy or magnetic force
microscopy and because their dynamics take place on ob-
servable time scales. Because many experiments are done
with vortex domain walls, many theoretical models have
been developed to describe them. He et al.16 developed a
two-dimensional �2D� model for the vortex domain wall,
while Shibata et al.15 described the current-induced motion
of a circular magnetic vortex. The biggest difference between
these two models and ours is that in their case, the vortex
�domain wall� is not straight but the equations of motion they
find are remarkably similar to ours in the isotropic, symmet-
ric case. The former group found the motion of the domain
wall toward the edge of the nanostrip that our model also
yields and the latter paper predicted precession of the vortex
domain wall in a potential. The model of Krüger et al.17 also
predicts precession, of an elliptical shape, and our zero-
temperature results are in agreement with theirs.

Current-driven vortex domain-wall motion has indeed
been observed by several experimental groups.20,34,35 Fur-
thermore, Heyne et al.7 found, as expected, that the sign of
the displacement in the Z direction is determined by the
Skyrmion number and by the sign of ��−��. In the presence
of pinning, precession of a magnetic vortex has indeed been
found experimentally as well.19 No detailed experimental re-
sults on current-driven magnetic vortices at nonzero tem-
perature have been reported.

V. CONCLUSIONS

We have presented a model for the driven motion of a
domain-wall line at nonzero temperature and analyzed this
model within several approximations. First, we considered a
general domain-wall line, which is described as a string in a
tilted washboard potential. We computed the average drift
velocity as a function of an applied current for currents lower
than the critical current.

In the limit of rigid domain walls, we were able to find
analytical expressions for drift velocities in the presence of
thermal fluctuations. For the field-driven case, the well-
known Walker-breakdown behavior smoothes for increasing
temperature. In the current-driven case, the drift velocity de-
pends heavily on the ratio of the dissipative spin-transfer
torque parameter � and the Gilbert damping �. Here, the
curves also smoothen with increasing temperature. As a re-
sult, we found no critical current for �=0 at nonzero tem-
perature. We also considered extrinsic pinning due to, for
example, a notch in the sample. We found that the escape
time is proportional to the exponent of the applied magnetic
field and the dissipative spin-transfer torque. Comparison
with experiment enabled us to estimate ��10−2 for that
experiment.13 Finally, we discussed the effect of a disorder
potential on the dynamics of the rigid domain wall.

For vortex domain walls, we computed domain-wall ve-
locities at zero temperature. In the presence of an extrinsic
pinning potential, we found an analytic upper bound for the
critical current. Numerical computation revealed critical cur-
rents just under this upper bound. At finite temperature, nu-
merical simulations provided us with depinning times as a
function of the applied current. We found two distinct re-
gimes: one where thermal fluctuations dominate and one
where the current dominates. In the thermal regime, we
found that the depinning time goes as log �
vs /T.

The models and results presented in this paper provide a
simple framework for describing domain walls at nonzero
temperature. Moreover, they are easily adapted to situations
not discussed in this paper, such as different geometries. We
hope that our results are confirmed with more experimental
and numerical results in the near future.
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